Template induced conformational change of amyloid-β monomer.

نویسندگان

  • Wenhui Xi
  • Wenfei Li
  • Wei Wang
چکیده

Population of aggregation-prone conformers for the monomeric amyloid-β (Aβ) can dramatically speed up its fibrillar aggregation. In this work, we study the effect of preformed template on the conformational distributions of the monomeric Aβ by replica exchange molecular dynamics. Our results show that the template consisting of Aβ peptides with cross-β structure can induce the formation of β-rich conformations for the monomeric Aβ, which is the key feature of the aggregation-prone conformers. Similar effect is observed when the hIAPP peptides and poly alanine peptides were used as templates, suggesting that the template effect is insensitive to the sequence details of the template peptides. In comparison, the template with helical structure has no significant effects on the β-propensity of the monomeric Aβ. Analysis to the interaction details revealed that the template tends to disrupt the intrapeptide interactions of the monomeric Aβ, which are absent in the fibrillar state, suggesting that the preformed template can reorganize the intrapeptide interactions of the monomeric Aβ during the capturing stage and reduce the energy frustrations for the fibrillar aggregations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Caspase inhibition in neuroinflammation induced by soluble β amyloid monomer, protects cells from abnormal survival and proliferation, via attenuation of NFқB activity

Introduction: Evidence suggests that neuronal apoptosis in neurodegenerative diseases is correlated with inflammatory reactions. The beneficial or detrimental role of apoptosis in neuroinflammation is unclear. Elucidating this question may be helpful in management of neurodegenerative diseases. Since TNF-α is able to induce apoptosis as well as increased viability of the cells by activation ...

متن کامل

Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.

A molecular understanding of prion diseases requires an understanding of the mechanism of amyloid fibril formation by the prion protein. In particular, it is necessary to define the sequence of the structural events describing the conformational conversion of monomeric PrP to aggregated PrP. In this study, the sequence of the structural events in the case of amyloid fibril formation by recombin...

متن کامل

Amyloid-β peptide promotes bacterial aging

The pathological hallmark of Alzheimer's disease is brain deposition of senile plaques composed predominantly of amyloid fibrils. These conformational structures, characteristic of many other human disorders, are formed mainly by the amyloid-β peptide Aβ42. This peptide, which is primarily disordered and soluble as an isolated monomer, can undergo an aggregation and fibrillation process that re...

متن کامل

Amyloid-β Forms Fibrils by Nucleated Conformational Conversion of Oligomers

Amyloid-β amyloidogenesis is reported to occur via a nucleated polymerization mechanism. If this is true, the energetically unfavorable oligomeric nucleus should be very hard to detect. However, many laboratories have detected early nonfibrillar amyloid-β oligomers without observing amyloid fibrils, suggesting that a mechanistic revision may be needed. Here we introduce Cys-Cys-amyloid-β(1-40),...

متن کامل

pH changes the aggregation propensity of amyloid-β without altering the monomer conformation.

Decoupling conformational changes from aggregation will help us understand amyloids better. Here we attach Alzheimer's amyloid-β(1-40) monomers to silver nanoparticles, preventing their aggregation, and study their conformation under aggregation-favoring conditions using SERS. Surprisingly, the α-helical character of the peptide remains unchanged between pH 10.5 and 5.5, while the solubility ch...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. B

دوره 116 25  شماره 

صفحات  -

تاریخ انتشار 2012